[−][src]Function rusty_fitpack::splder_uniform
pub fn splder_uniform(
t: &Vec<f64>,
c: &Vec<f64>,
k: usize,
x: f64,
nu: usize
) -> f64
The function splder_uniform
evaluates in a point x the derivative of order nu of a spline
$s(x)$ of degree $k$, given in its of degree k given in its B-spline representation.
Example
Simple example of spline interpolation and evaluation of the first derivative
use rusty_fitpack::{splrep, splder_uniform}; let x = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); // the points where we want to evaluate the spline let x_evaluate: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; let mut y_from_spline: Vec<f64> = Vec::new(); for value in x_evaluate.iter() { y_from_spline.push(splder_uniform(&t, &c, k, *value, 1)); }
Arguments:
t
: position of the knots.
c
: b-spline coefficients.
k
: the degree of $s(x)$.
x
: point where $s(x)$ must be evaluated.
nu
: order of derivative
Output:
y
: the value of s(x) at the different points.
Restrictions:
$m >= 1$
$t(k+1) <= x(i) <= x(i+1) <= t(n-k)$ with $i = 1, 2,...,m-1$
$ 0 <= \nu <= k$