1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
//! Rusty FITPACK provides the 1D routines for spline interpolation and fitting //! in Rust. The functions are translated from the original Fortran77 code [FITPACK](http://www.netlib.org/dierckx) by Paul Dierckx. //! This packages provides almost the same interface as the [SciPy](http://www.scipy.org) wrapper for FITPACK. //! In concrete terms, the package implements three functions, `splrep`, `splev` and `splev_uniform`. //! //! //! //! References //! ---------- //! Based on algorithms described by Paul Dierckx in Ref [1-4]:<br> //! //! [1] P. Dierckx, "An algorithm for smoothing, differentiation and integration of experimental data using spline functions", J.Comp.Appl.Maths 1 (1975) 165-184. //! //! [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 1286-1304. //! //! [3] P. Dierckx, "An improved algorithm for curve fitting with spline functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. //! //! [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. use crate::fpbspl::fpbspl; use std::cmp::max; mod curfit; mod fpchec; mod fpcurf; mod fpdisc; mod fpgivs; //mod fpknot; mod fpback; mod fpbspl; mod fprati; mod fprota; /// Find the B-spline representation of a 1-D curve. /// Given the set of data points $(x(i), y(i))$ determine a smooth spline /// approximation of degree k on the interval $xb <= x <= xe$. /// /// #### Example /// Simple example of spline interpolation /// ``` /// use rusty_fitpack::splrep; /// let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; /// let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; /// /// let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); /// ``` /// /// #### Parameters /// ---------- /// `x, y` : The data points defining a curve $y = f(x)$. <br> <br> /// `w` : Strictly positive `Vec<f64>` of weights the same length as `x` and `y`. /// The weights are used in computing the weighted least-squares spline /// fit. If the errors in the `y` values have standard-deviation given by the /// vector `d`, then w should be `1/d`. Default is `vec![1.0; x.len()]`. <br> <br> /// `xb, xe` : The interval to fit. If None, these default to `x[0]` and `x[-1]` /// respectively. <br> <br> /// `k` : The degree of the spline fit. It is recommended to use cubic splines. /// Even values of `k` should be avoided especially with small `s` values. /// `1 <= k <= 5` <br> <br> /// `task` : `{0, -1}` If `task==0` find `t` and `c` for a given smoothing factor, `s`. <br> /// If `task=-1` find the weighted least square spline for a given set of /// knots, `t`. These should be interior knots as knots on the ends will be /// added automatically.<br> <br> /// `s` : A smoothing condition. The amount of smoothness is determined by /// satisfying the conditions: `sum((w * (y - g)).powi(2),axis=0) <= s` where g(x) /// is the smoothed interpolation of `(x,y)`. The user can use s to control /// the tradeoff between closeness and smoothness of fit. Larger s means /// more smoothing while smaller values of s indicate less smoothing. /// Recommended values of s depend on the weights, w. If the weights /// represent the inverse of the standard-deviation of y, then a good s /// value should be found in the range `(m-(2*m).sqrt(),m+(2*m).sqrt())` where m is /// the number of datapoints in `x, y,` and `w`. default : `s=m-(2*m).sqrt()` if /// weights are supplied. `s = 0.0` (interpolating) if no weights are /// supplied. <br> <br> /// `t` : The knots needed for `task=-1`. If given then task is automatically set /// to -1. <br> <br> /// `full_output` Should be None. Feature is not implemented yet. <br> <br> /// `per` : Should be None. Periodic spline approximations are not supported yet. <br> <br> /// `quiet`: Should be None. Feature is not implemented yet. <br> <br> /// pub fn splrep( x: Vec<f64>, y: Vec<f64>, w: Option<Vec<f64>>, xb: Option<f64>, xe: Option<f64>, k: Option<usize>, task: Option<i8>, s: Option<f64>, t: Option<Vec<f64>>, full_output: Option<bool>, per: Option<bool>, quiet: Option<bool>, //) -> (Vec<f64>, Vec<f64>, usize) { ) -> (Vec<f64>, Vec<f64>, usize) { let m: usize = x.len(); let s: f64 = match s { None => { if w == None { 0.0 } else { (m as f64) - (2.0 * m as f64).sqrt() } } Some(value) => value, }; let w: Vec<f64> = w.unwrap_or(vec![1.0; m]); let k: usize = k.unwrap_or(3); let mut task: i8 = task.unwrap_or(0); let _full_output: bool = full_output.unwrap_or(false); let _per: bool = per.unwrap_or(false); let _quiet: bool = quiet.unwrap_or(true); assert_eq!(w.len(), m, "length of w is not equal to length of x"); assert_eq!(x.len(), y.len(), "length of x is not equal to length of y"); assert!( 1 <= k && k <= 5, "Given degree of the spline is not supported (1<=k<=5)." ); assert!(m > k, "m > must hold"); let xb: f64 = xb.unwrap_or(x[0]); let xe: f64 = xe.unwrap_or(x[x.len() - 1]); assert!(0 <= task && task <= 1, "task must be 0, or 1"); if t.is_some() { task = -1; } let (t, nest): (Vec<f64>, usize) = if task == -1 { assert!(t.is_some(), "knots must be given for task = -1"); let numknots: usize = t.clone().unwrap().len(); let nest: usize = numknots + 2 * k + 2; let mut new_t: Vec<f64> = vec![0.0; nest]; for (i, value) in t.unwrap().iter().enumerate() { new_t[k + 1 + i] = *value; } (new_t, nest) } else if task == 0 { let nest: usize = max(m + k + 1, 2 * k + 3); (vec![0.0; nest], nest) } else { (vec![0.0; 1], 0) }; let wrk: Vec<f64> = vec![0.0; m * (k + 1) + nest * (7 + 3 * k)]; let (t, n, c, _fp, _ier): (Vec<f64>, usize, Vec<f64>, f64, i8) = curfit::curfit(task, x, y, w, xb, xe, k, s, nest, t, wrk); let tck = (t[..n].to_vec(), c[..n].to_vec(), k); return tck; } /// The function `splev` evaluates a number of points $x(i)$ with $i=1,2,...,m$ /// a spline $s(x)$ of degree $k$, given in its B-spline representation. /// /// #### Example /// Simple example of spline interpolation and evaluation /// ``` /// use rusty_fitpack::{splrep,splev}; /// let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; /// let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; /// /// let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); /// /// // the points where we want to evaluate the spline /// let x_evaluate: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; /// let y_from_spline: Vec<f64> = splev(t, c, k, x_evaluate, 0); /// ``` /// Arguments: /// ---------- /// `t` : position of the knots. <br> /// `c` : b-spline coefficients. <br> /// `k` : the degree of $s(x)$. <br> /// `x` : points where $s(x)$ must be evaluated. <br> /// `e` : if 0 the spline is extrapolated from the end /// spans for points not in the support, if 1 the spline /// evaluates to zero for those points, if 2 ier is set to /// 1 and the subroutine returns, and if 3 the spline evaluates /// to the value of the nearest boundary point. <br> /// /// Output: /// ---------- /// `y` : the value of s(x) at the different points.<br> /// /// Restrictions: /// ---------- /// $m >= 1$<br> <br> /// $t(k+1) <= x(i) <= x(i+1) <= t(n-k)$ with $i = 1, 2,...,m-1$<br> <br> /// /// References /// ---------- /// [1] De Boor, C. On calculating with B-splines, J. Approximation Theory, 6 (1972) 50-62.<br> /// [2] Cox, M.G., The numerical evaluation of B-splines, J. Inst. Maths Applics 10 (1972) 134-149.<br> /// [3] Dierckx, P. Curve and Surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. <br> pub fn splev(t: Vec<f64>, c: Vec<f64>, k: usize, x: Vec<f64>, e: usize) -> Vec<f64> { let mut y: Vec<f64> = vec![0.0; x.len()]; let k1: usize = k + 1; let k2: usize = k1 + 1; let nk1: usize = t.len() - k1; let tb: f64 = t[k1 - 1]; let te: f64 = t[nk1]; let mut l: usize = k1; let mut l1: usize = l + 1; // main loop for different points for i in 1..(x.len() + 1) { // fetch a new x-value let mut arg: f64 = x[i - 1]; if arg < tb && e == 3 { arg = tb; } else if arg > te && e == 3 { arg = te; } // search for knot interval t(l) <= arg < t(l+1) while arg < t[l - 1] && l1 != k2 { l1 = l; l = l - 1; } while arg >= t[l1 - 1] && l != nk1 { l = l1; l1 = l + 1; } // evaluate the non-zero b-splines at arg // call fpbspl let h: Vec<f64> = fpbspl(arg, &t, k, l); // find the value of s(x) at x = arg let mut sp: f64 = 0.0; let mut ll: usize = l - k1; for j in 1..(k1 + 1) { ll = ll + 1; sp = sp + c[ll - 1] * h[j - 1]; } y[i - 1] = sp; } return y; } /// The function `splev_uniform` evaluates a single point $x$ of /// a spline $s(x)$ of degree $k$, given in its B-spline representation. The functions /// assumes that the knots `t` are spaced uniformly so that the interval $t_i <= x < t_(i+1)$ /// can be found without iterating over all knots /// /// This function was originally written in Fortran90 by Alexander Humeniuk (Author of DFTBaby) as /// a modified subroutine of the splev subroutine by Paul Dierckx. /// /// #### Example /// Simple example of spline interpolation and evaluation /// ``` /// use rusty_fitpack::{splrep, splev, splev_uniform}; /// let x = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; /// let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; /// /// let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); /// /// // the points where we want to evaluate the spline /// let x_evaluate: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; /// let mut y_from_spline: Vec<f64> = Vec::new(); /// for value in x_evaluate.iter() { /// y_from_spline.push(splev_uniform(&t, &c, k, *value)); /// } /// ``` /// Arguments: /// ---------- /// `t` : position of the knots. <br> /// `c` : b-spline coefficients. <br> /// `k` : the degree of $s(x)$. <br> /// `x` : point where $s(x)$ must be evaluated. <br> /// /// Output: /// ---------- /// `y` : the value of s(x) at the point x.<br> /// pub fn splev_uniform(t: &Vec<f64>, c: &Vec<f64>, k: usize, x: f64) -> f64 { let k1: usize = k + 1; let nk1: usize = t.len() - k1; let tb: f64 = t[k1 - 1]; let te: f64 = t[nk1]; let mut l: usize = 0; // fetch a new x-value let arg: f64; // search for knot interval t(l) <= arg < t(l+1) if x <= tb { arg = tb; l = k1; } else if x >= te { arg = te; l = nk1; } else { arg = x; // find interval such that t(l) <= x < t(l+1) let dt: f64 = t[k1 + 1] - t[k1]; // uniform distance between knots if dt != 0.0 { l = ((x - t[0]) / dt) as usize + k; } } // If l < k, we divide by zero because the interpolating points t[0..k] = 0.0 if l <= k { l = k1; } else if l > nk1 { l = nk1; } // evaluate the non-zero b-splines at arg let h: Vec<f64> = fpbspl(arg, &t, k, l); // find the value of s(x) at x = arg let mut y: f64 = 0.0; let mut ll: usize = l - k1; for j in 1..(k1 + 1) { ll = ll + 1; y = y + c[ll - 1] * h[j - 1]; } return y; } /// The function `splder` evaluates a number of points $x(i)$ with $i=1,2,...,m$ /// the derivative of order nu of a spline $s(x)$ of degree $k$, given in its /// B-spline representation. /// /// #### Example /// Simple example of spline interpolation and evaluation of the first derivative /// ``` /// use rusty_fitpack::{splrep, splder}; /// let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; /// let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; /// /// let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); /// /// // the points where we want to evaluate the spline /// let x_evaluate: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; /// let y_from_spline: Vec<f64> = splder(&t, &c, k, &x_evaluate, 1); /// ``` /// Arguments: /// ---------- /// `t` : position of the knots. <br> /// `c` : b-spline coefficients. <br> /// `k` : the degree of $s(x)$. <br> /// `x` : points where $s(x)$ must be evaluated. <br> /// `nu` : order of derivative <br> /// /// Output: /// ---------- /// `y` : the value of s(x) at the different points.<br> /// /// Restrictions: /// ---------- /// $m >= 1$<br> <br> /// $t(k+1) <= x(i) <= x(i+1) <= t(n-k)$ with $i = 1, 2,...,m-1$<br> <br> /// $ 0 <= \nu <= k$ /// /// References /// ---------- /// [1] De Boor, C. On calculating with B-splines, J. Approximation Theory, 6 (1972) 50-62.<br> /// [2] Cox, M.G., The numerical evaluation of B-splines, J. Inst. Maths Applics 10 (1972) 134-149.<br> /// [3] Dierckx, P. Curve and Surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. <br> pub fn splder(t: &Vec<f64>, c: &Vec<f64>, k: usize, x: &Vec<f64>, nu:usize) -> Vec<f64> { // before starting computations a data check is made. if the input data // are invalid control is immediately repassed to the calling program. assert!(nu >= 0 && nu <= k, "The order of derivative is outside 0 - k"); let n: usize = t.len(); let k1: usize = k + 1; let nk1: usize = n - k1; let tb: f64 = t[k]; let te: f64 = t[nk1]; // the derivative of order nu of a spline of degree k is a spline of degree k - nu, // the b-spline coefficients wrk(i) of which can be found using the recurrence scheme // of de boor let mut l: usize = 1; let mut l1: usize = l; let mut ll: usize; let mut kk: usize = k; let nn: usize = n; // copy the b-spline coefficients let mut wrk: Vec<f64> = c.clone(); let m: usize = x.len(); let mut y: Vec<f64> = Vec::new(); let mut arg: f64 = 0.0; if nu != 0 { let mut nk2: usize = nk1; for j in 0..nu { let ak: f64 = kk as f64; nk2 -= 1; l1 = l; for i in 0..nk2 { l1 += 1; let l2: usize = l1 + kk; let fac: f64 = t[l2 - 1] - t[l1 - 1]; if fac > 0.0 { wrk[i] = ak * (wrk[i+1] - wrk[i]) / fac } } l += 1; kk -= 1; } if kk == 0 { // if nu = k the derivative is a piecewise constant function let mut j:usize = 0; for i in 0..m { arg = x[i]; while arg >= t[l] && l != nk1 { l += 1; j += 1; } y.push(wrk[j]); } } } l = k1; l1 = l + 1; let k2: usize = k1 - nu; if kk > 0 { // main loop // we have to evaluate a spline of degree k - nu for i in 0..m { arg = { if x[i] < tb { tb } else if x[i] > te { te } else { x[i] } }; // search for knot interval t(l) <= arg < t(l+1) while arg >= t[l1 - 1] && l != nk1 { l = l1; l1 = l + 1; } // evaluate the non-zero b-splines at arg let h: Vec<f64> = fpbspl(arg, &t, kk, l); // find the value of the derivative at x=arg let mut sp: f64 = 0.0; ll = l - k1; for j in 0..k2 { ll = ll + 1; sp = sp + wrk[ll - 1] * h[j]; } y.push(sp); } } return y; } /// The function `splder_uniform` evaluates in a point x the derivative of order nu of a spline /// $s(x)$ of degree $k$, given in its of degree k given in its B-spline representation. /// /// #### Example /// Simple example of spline interpolation and evaluation of the first derivative /// ``` /// use rusty_fitpack::{splrep, splder_uniform}; /// let x = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; /// let y = vec![0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0]; /// /// let (t, c, k) = splrep(x, y, None, None, None, None, None, None, None, None, None, None); /// /// // the points where we want to evaluate the spline /// let x_evaluate: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; /// let mut y_from_spline: Vec<f64> = Vec::new(); /// for value in x_evaluate.iter() { /// y_from_spline.push(splder_uniform(&t, &c, k, *value, 1)); /// } /// ``` /// Arguments: /// ---------- /// `t` : position of the knots. <br> /// `c` : b-spline coefficients. <br> /// `k` : the degree of $s(x)$. <br> /// `x` : point where $s(x)$ must be evaluated. <br> /// `nu` : order of derivative <br> /// /// Output: /// ---------- /// `y` : the value of s(x) at the different points.<br> /// /// Restrictions: /// ---------- /// $m >= 1$<br> <br> /// $t(k+1) <= x(i) <= x(i+1) <= t(n-k)$ with $i = 1, 2,...,m-1$<br> <br> /// $ 0 <= \nu <= k$ /// pub fn splder_uniform(t: &Vec<f64>, c: &Vec<f64>, k: usize, x: f64, nu:usize) -> f64 { // before starting computations a data check is made. if the input data // are invalid control is immediately repassed to the calling program. assert!(nu >= 0 && nu <= k, "The order of derivative is outside 0 - k"); let n: usize = t.len(); let k1: usize = k + 1; let nk1: usize = n - k1; let tb: f64 = t[k]; let te: f64 = t[nk1]; // the derivative of order nu of a spline of degree k is a spline of degree k - nu, // the b-spline coefficients wrk(i) of which can be found using the recurrence scheme // of de boor let mut l: usize = 1; let mut l1: usize = l; let mut ll: usize; let mut kk: usize = k; let nn: usize = n; // copy the b-spline coefficients let mut wrk: Vec<f64> = c.clone(); let mut arg: f64 = 0.0; let mut y: f64 = 0.0; if nu != 0 { let mut nk2: usize = nk1; for j in 0..nu { let ak: f64 = kk as f64; nk2 -= 1; let mut l1: usize = l; for i in 0..nk2 { l1 = l1 + 1; let l2: usize = l1 + kk; let fac: f64 = t[l2 - 1] - t[l1 - 1]; if fac > 0.0 { wrk[i] = ak * (wrk[i + 1] - wrk[i]) / fac } } l += 1; kk -= 1; } if kk == 0 { // if nu = k the derivative is a piecewise constant function let mut j: usize = 0; while x >= t[l] && l != nk1 { l += 1; j += 1; } y = wrk[j - 1] } } l = k1; l1 = l + 1; let k2: usize = k1 - nu; if kk > 0 { // if not then we have to evaluate a spline of degree k - nu // search for knot interval t(l) <= arg < t(l+1) if x <= tb { arg = tb; l = k1; } else if x >= te { arg = te; l = nk1; } else { arg = x; // find interval such that t(l) <= x < t(l+1) let dt: f64 = t[k1 + 1] - t[k1]; // uniform distance between knots if dt != 0.0 { l = ((x - t[0]) / dt) as usize + k; } } // If l < k, we divide by zero because the interpolating points t[0..k] = 0.0 if l <= kk { l = k1 - nu; } else if l > nk1 { l = nk1; } // evaluate the non-zero b-splines at arg let h: Vec<f64> = fpbspl(arg, &t, kk, l); // find the value of the derivative at x=arg let mut sp: f64 = 0.0; ll = l - k1; for j in 0..k2{ ll = ll +1; sp = sp + wrk[ll-1] * h[j]; } y = sp; } return y; } #[cfg(test)] mod tests { use crate::{splev, splev_uniform, splrep}; /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// /// spl = splrep(x, y) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn simple_spline_interpolation() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let (t, c, k) = splrep( x, y, None, None, None, None, None, None, None, None, None, None, ); let t_ref: Vec<f64> = vec![ 0.5, 0.5, 0.5, 0.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 11.0, 11.0, 11.0, 11.0, ]; let c_ref: Vec<f64> = vec![ -2.6611993517399935e-17, 9.0032063142935170e-01, 2.7876063631714838e+00, 8.6767816283663706e+00, 1.5663956371192338e+01, 2.4667392886864288e+01, 3.5666472081350541e+01, 4.8666718787733515e+01, 6.3666652767715512e+01, 8.6333342599300764e+01, 1.0633332870034963e+02, 1.2100000000000000e+02, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// spl = splrep(x, y, s=0.5) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn simple_spline_fit() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let (t, c, k) = splrep( x, y, None, None, None, None, None, Some(0.5), None, None, None, None, ); let t_ref: Vec<f64> = vec![0.5, 0.5, 0.5, 0.5, 11.0, 11.0, 11.0, 11.0]; let c_ref: Vec<f64> = vec![ 9.6048864019998764e-02, 3.9719628633913779e+00, 4.3868995123976298e+01, 1.2101960437915093e+02, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// w = [0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0] /// spl = splrep(x, y, w=wm s=0) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn spline_interpolation_with_weights() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let w: Vec<f64> = vec![0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0]; let (t, c, k) = splrep( x, y, Some(w), None, None, None, None, Some(0.0), None, None, None, None, ); let t_ref: Vec<f64> = vec![ 0.5, 0.5, 0.5, 0.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 11.0, 11.0, 11.0, 11.0, ]; let c_ref: Vec<f64> = vec![ 3.5816830069903035e-17, 9.0032063142935159e-01, 2.7876063631714838e+00, 8.6767816283663706e+00, 1.5663956371192336e+01, 2.4667392886864263e+01, 3.5666472081350641e+01, 4.8666718787733217e+01, 6.3666652767715597e+01, 8.6333342599300707e+01, 1.0633332870034965e+02, 1.2100000000000000e+02, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// w = [0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0] /// spl = splrep(x, y, w=w) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn spline_fit_with_weights() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let w: Vec<f64> = vec![0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0]; let (t, c, k) = splrep( x, y, Some(w), None, None, None, None, None, None, None, None, None, ); let t_ref: Vec<f64> = vec![0.5, 0.5, 0.5, 0.5, 11., 11., 11., 11.]; let c_ref: Vec<f64> = vec![ 0.20514750870201512, 3.79852892458793200, 43.9786486869686500, 121.003719055670530, 0.00000000000000000, 0.00000000000000000, 0.00000000000000000, 0.00000000000000000, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// t = [2.5, 3.5, 4.5] /// spl = splrep(x, y, t=t) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn spline_interpolation_with_specified_knots() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let t: Vec<f64> = vec![2.5, 3.5, 4.5]; let (t, c, k) = splrep( x, y, None, None, None, None, None, None, Some(t), None, None, None, ); let t_ref: Vec<f64> = vec![0.5, 0.5, 0.5, 0.5, 2.5, 3.5, 4.5, 11., 11., 11., 11.]; let c_ref: Vec<f64> = vec![ 4.3456188984254242e-03, 1.1369046801251863e+00, 3.8089766153250060e+00, 1.1942469486307893e+01, 3.4554109906393840e+01, 7.3350195466184161e+01, 1.2099781223876728e+02, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep, splev /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// w = [0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0] /// t = [2.5, 3.5, 4.5] /// spl = splrep(x, y, w=w, xb=0.0, xe=16.0, t=t, s=0.8) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn spline_fit_limits_knots_weights() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let w: Vec<f64> = vec![0.5, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 0.1, 8.0, 0.2, 3.0, 2.0]; let t: Vec<f64> = vec![2.5, 3.5, 4.5]; let (t, c, k) = splrep( x, y, Some(w), Some(0.0), Some(16.0), None, None, None, Some(t), None, None, None, ); let t_ref: Vec<f64> = vec![0., 0., 0., 0., 2.5, 3.5, 4.5, 16., 16., 16., 16.]; let c_ref: Vec<f64> = vec![ -0.6664597168700137, 0.3028630978060425, 2.7945126095902090, 11.928341312803433, 47.885102645361140, 133.39937455474050, 255.87891800341376, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 3); } /// The reference values were calculated using the SciPy interface to Fitpack /// Python: 3.7.6 (conda, GCC 7.3.0), NumPy: 1.18.1, SciPy: 1.4.1 /// the following code was used /// ```python /// from scipy.interpolate import splrep /// import numpy as np /// x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] /// y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] /// /// spl = splrep(x, y, k=5) /// np.set_printoptions(16) /// print(spl[0]) /// print(spl[1]) /// print(spl[2]) /// ``` #[test] fn spline_interpolation_fifth_order() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let (t, c, k) = splrep( x, y, None, None, None, Some(5), None, None, None, None, None, None, ); let t_ref: Vec<f64> = vec![ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 3., 4., 5., 6., 7., 8., 11., 11., 11., 11., 11., 11., ]; let c_ref: Vec<f64> = vec![ -3.1525642173709244e-17, 9.6187233587515120e-01, 2.2151448816620882e+00, 5.9694686107264907e+00, 1.2784814311098723e+01, 2.4504570963883427e+01, 3.5498043000268858e+01, 5.3701926216065736e+01, 7.2898267193716578e+01, 9.1401339513703903e+01, 1.0779928004881573e+02, 1.2100000000000000e+02, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, ]; assert_eq!(t, t_ref); assert_eq!(c, c_ref); assert_eq!(k, 5); } ///from scipy.interpolate import splrep, splev // import numpy as np // x = [0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0] // y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0] // spl = splrep(x, y) // #spl = splrep(x, y, w=w, xb=0.0, xe=16.0, t=t, s=0.8) // np.set_printoptions(16) // x_ev = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0] // print(splev(x_ev, spl)) #[test] fn simple_spline_int_evaluation() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let (t, c, k) = splrep( x, y, None, None, None, None, None, None, None, None, None, None, ); let x_ev: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; let y_ev: Vec<f64> = splev(t, c, k, x_ev, 0); let y_ev_ref: Vec<f64> = vec![ 1.0000000000000000, 2.2886751346026550, 4.0000000000000000, 6.2396370288907080, 9.0000000000000000, 12.252776749834513, 16.000000000000000, ]; assert_eq!(y_ev, y_ev_ref); } #[test] fn simple_spline_fit_evaluation() { let x = vec![0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, ]; let (t, c, k) = splrep( x, y, None, None, None, None, None, Some(0.5), None, None, None, None, ); let x_ev: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]; let y_ev: Vec<f64> = splev(t, c, k, x_ev, 0); let y_ev_ref: Vec<f64> = vec![ 0.8949255652788439, 2.1846839913312492, 3.9661226253216117, 6.2400399503943280, 9.0072344496937950, 12.268504606364406, 16.024648903550563, ]; assert_eq!(y_ev, y_ev_ref); } #[test] fn spline_interpolation_evaluation_uniform() { let x = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]; let y = vec![ 1.0, 4.0, 7.0, 18.0, 22.0, 41.0, 45.0, 63.0, 80.0, 99.0, 119.0, ]; let (t, c, k) = splrep( x, y, None, None, None, None, None, None, None, None, None, None, ); let x_ev: Vec<f64> = vec![1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 7.5, 10.5, 10.9, 11.0]; let mut y_ev: Vec<f64> = Vec::new(); for value in x_ev.iter() { y_ev.push(splev_uniform(&t, &c, k, *value)); } let y_ev_ref: Vec<f64> = vec![ 1.0000000000000002, 3.6369718796023560, 4.0000000000000010, 4.3630281203976470, 7.0000000000000030, 12.910915638807067, 17.999999999999996, 52.585943252945510, 109.16264152245950, 117.08616453424153, 119.00000000000000]; assert_eq!(y_ev, y_ev_ref); } }